Overview of the AUREP: Advanced University Reciprocating Engine Program

Presented by
Dr. Bryan Willson, Colorado State University
on Behalf of the
Academic Advisory Board
of the AUREP

Peer Review of ARES Reciprocating Engine Program
DOE Distributed Energy Peer Review
Washington, D.C.
December 2-3, 2003

Outline

- The AUREP Research Program
- Selected Results to Date
- The Academic Advisory Board
- Academic / Industry Linkages

ARES Program Goals & Barriers

Program Goals:

Efficiency:

50% electrical generation efficiency

Emissions:

0.1 gm/kw-hr NOx

Economics:

reduce life-cycle cost of power generation by 10%

Barriers:

Identified through:

- Roadmapping workshops
- Industry consultation
- Precompetitive research efforts

Used to guide university solicitation

Initial focus areas:

- Improved ignition for highbmep lean-burn engines
- Reduced mechanical friction
- Improved exhaust aftertreatment

University Reciprocating Engine Research

Managed For Office of Power Technologies/Office of Energy Efficiency and Renewable Energy

Tom J. George, DOE/NETL Project Manager Ronald Fiskum, DOE/EERE Program Sponsor

COOPERATIVE AGREEMENT with TEN UNIVERSITIES

\$6,4712,000 Total Contract Value (\$5,392,700 DOE)

12 AUREP Projects: 10 direct, 2 "special status"

- Fundamental Studies of Ignition Processes in Large Natural Gas Engines Using Laser Spark Ignition
 Colorado State University
- Low Engine Friction Technology for Advanced Natural Gas Reciprocating Engines
 Massachusetts Institute of

Technology

Colorado State University

 Ignition Improvement of Lean Natural Gas Mixtures

Michigan Technological University

 Two Stage Catalytic Reduction of NOx

Ohio State University

 Corona Discharge Ignition for Advanced Stationary Natural Gas Engines

University of Southern California

• Reduced Engine Friction and Wear
University of Texas at Austin

 Rail-Plug Ignition System for Enhancing Engine Performance and Reducing Maintenance

University of Texas at Austin

Advanced Natural Gas
 Reciprocating Engine: Parasitic
 Loss Control Through Surface
 Modification

Purdue University

 Selective NOx Re-Circulation for Stationary Lean-Burn Natural Gas Engine

West Virginia University

- Energy Thermal Management via Active Flow Control
 - University of Tennessee
- *Improvement to Pipeline Compressor Engine Reliability Through Retro-Fit Micro-Pilot Ignition System

Colorado State University

*Catalyst Studies University of Maryland

*Special status - funded through other DOE programs

<u>Goal</u>: To help overcome ignition-induced barriers to high efficiency, high reliability, and low emissions

Ron Matthews, Principle Investigator
(Matt Hall and DK Ezekoye, Co-Pls)
Tom J. George, Project Manager, DOE/NETL.
Ronald Fiskum, Program Spomor, DOE/EERE
COOPERATIVE AGREEMENT DE-FC26-01NT41334
Awarded 9/30/01, 36 Month Duration
\$670,481 Total Contract Value (\$491,460 DOE)

Wester

Retrofit of Micropilot

Special status: Funded through other DOE programs

Colorado State University

Engines & Energy Conversion Laboratory

Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

> Dr. Bryan Willson, Principal Investigator Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor, DOE/EERE

> Cooperative Agreement DE-FC26-02NT41335 Awarded 5/1/02, 24 months \$736,839 Total Contract Value (\$500,000 DOE)

Ignition Improvements of Lean Natural Gas Mixtures

Dr. Duane Abata

Dr. Jason Keith

Prof. Lee Oberto

Interdisciplinary Center for Advanced Propulsion

Chris Henning

Dave Horstman

Kirk Opella

Michigan Technological University Houghton, Michigan

(")

University of Southern California

Corona Discharge Ignition for Advanced Stationary Natural Gas Engines

Paul D. Ronney, Principal Investigator, USC/AME Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor, DOE/EERE

COOPERATIVE AGREEMENT DE-FC26-02NT41336

Awarded 4/1/03, 36 Month Duration \$710,491 Total Contract Value (\$560,491 DOE)

The University of Texas

Railplug Ignition System for Enhancing Engine Performance and Reducing Maintenance

Ron Matthews, Principle Investigator
(Matt Hall and DK Ezekoye, Co-Pls)
Tom J. George, Project Manager, DOE/NETL
Ronald Fiskum, Program Sponsor, DOE/EERE
COOPERATIVE AGREEMENT DE-FC26-01NT41334

Awarded 9/30/01, 36 Month Duration \$670,481 Total Contract Value (\$491,460 DOE)

Wedn

Special status: Funded through DOE Natural Gas Infrastructure Program

Goal: To help increase engine efficiency by overcoming friction-induced parasitic losses

Massachusetts Institute of Technology

Low Engine Friction Technology for Advanced Natural Gas Reciprocating Engines

Victor W. Wong, Principal Investigator, MIT Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor, DOE/EERE

COOPERATIVE AGREEMENT DE-FC26-02NT41339

Awarded April 1, 2002 (24 Month Duration) \$910,068 Total Contract Value (\$ 728,063 DOE)

Purdue University Parasitic Loss Control Through Surface Modification

Principle Investigator: Farshid Sadeghi, Ph.D.

Tom J. George, Project Manager, DOE/NETL

Ronald Fiskum, Program Sponsor, DOE/EERE

COOPERATIVE AGREEMENT DE-FC26-02NT41340

Awarded (4/1/2002, 36 Month Duration)

Total Contract Value: \$575,317 - DOE Share: 459,41

Purdue Cost Share: \$115,903

Purdue University

Tribology Laboratory

The University of Texas Reduced Engine Friction and Wear

Ron Matthews, Principle Investigator
(Mike Bryant and Tom Kiehne, Co-Pls)
Tom J. George, Project Manager, DOE/NETL
Ronald Fiskum, Program Sponsor, DOE/EERE
COOPERATIVE AGREEMENT DE-FC26-01NT41337

Awarded 9/30/01, 36 Month Duration \$755,637 Total Contract Value (\$557,689 DOE)

Wednesday, April 9, 2003

Goal: To support ARES emissions goals by removing barriers to effective aftertreatment

University of Maryland

Principal Investigator Dr. Greg Jackson

Special status: Funded through other DOE programs

Selective NOx Recirculation Project

Principle Investigator

Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor, DOE/EERE

Industrial Partner

Sorbent Technologies Corporation

Project Team

Dr. Nigel Clark, Dr. Gregory Thompson, Ralph Nine, Krishna Aravelli, Chamila Tissera

COOPERATIVE AGREEMENT DE-FC26-02NT 41608

Awarded (10/01/2002, 36 Month Duration) \$749,913 Total Contract Value (\$599,287 DOE)

The University of Tennessee

Energy Efficient Thermal Management of Natural Gas Engine After treatment Via Active Flow Control

Principle Investigators

David K. Irick

Ke Nguyen

Tom J. George, Project Manager, DOE/NETL

Ronald Fiskum, Program Sponsor, DOE/EERE

COOPERATIVE AGREEMENT DE-FC26-02NT41609

Awarded (10/01/2002, 36 Month Duration)

\$750,000 Total Contract Value (\$600,000 DOE)

Ohio State University
Two-Stage Catalytic Reduction of NOx

Umit S. Ozkan, Principle Investigator Tom J. George, Project Manager, DOE/NETL Ronald Fiskum, Program Sponsor DOE/EERE

COOPERATIVE AGREEMENT DE-FC26-02NT41608

Awarded (10/1/02, 36 Month Duration) \$760,321 Total Contract Value (\$600,930 DOE)

DOE-NETL 4/9/03-USO

University of Maryland

Principal Investigator Dr. Greg Jackson

Special status: Funded through other DOE programs

Selected Results: CSU Laser Ignition (1/3)

Original tasks:

- Combustion test chamber studies
- 2. Optical engine studies
- 3. On-engine studies
- Implementation issues, including fiber optic delivery

Program developments

- Complementary programs also initiated at DOE labs: NETL & Argonne
- Fiber optic delivery more difficult than originally thought

Selected Results: CSU Laser Ignition (2/3)

- Some redundancy in optical engine & single cylinder experiments with DOE labs
- Potential major obstacle with fiber optic beam delivery
- Project was refocused to move fiber optic delivery to an earlier high-priority task
- Additional investigators brought in from diverse interdisciplinary groups at CSU
- Partnership formed with another national lab (Oak Ridge National Lab) for optical modeling support
- Several alternative approaches identified

Selected Results: CSU Laser Ignition (3/3)

- Initial success with fiber optic beam delivery achieved on 11/6/03
- Further fiber optic concepts being evaluated
- Program will move directly to abbreviated CTC phase then on-engine
- Engine installed for the project can support other DOE onengine tests, if desired

Academic Advisory Board: Motivation & History

 ARES manufacturers work together to "speak with one voice" on issues of common interest

- University program could be similarly enhanced through coordinated communication
- Program began informally with DOE Ignition Workshop in November '02
- Groundwork by steering committee in January '03
- Program formalized at organizational meeting in April '03

Academic Advisory Board: Goals

- Facilitate education of university research community on broader engine issues, outside of focused research specialty
- Provides DOE a conduit for University expertise and opinions on critical issues facing engine research and development
- Assists DOE in identifying research needs
- Enhances credibility and generality to University program by establishing standard test conditions and metrics

Academic Advisory Board: Accomplishments

- Have provided technical support for 4 specialized DOE/Industry topical workshops on:
 - Ignition systems: CSU
 - Friction / Efficiency: MIT, Purdue, Univ. of Texas, CSU
 - Catalysts / Aftertreatment: Ohio State, Maryland
- Convened organizational meeting in April '03
- Drafted standard testing conditions / metrics for:
 - Standard in-cylinder conditions for ignition & friction studies
 - Standard exhaust composition conditions for aftertreatment studies
- Convened 2-day workshop on ARES-type natural gas engines
 November 19 & 20
- Working with DOE & industry group on implementing an industry internship program

Academic / Industry Linkages

Formal overview during
 University review

Caterpillar

Cummins

Waukesha

Academic / Industry Linkages Educational Benefits

- Most of the 12 projects utilize 2-3 graduate research assistants; many utilize additional undergraduate assistants
- Projects provide "real-world" research experiences for students
- Program provides a valuable source of high-quality engineering talent to the U.S. distributed generation industry

